
UNCLASSIFIED E

SECURI'rT CLASSIFICATION OF TMIS PAGE (When rdrenred)
ILEAD VEWMJCn'O.S

REPORT DOCUMENTATION PAGE qrr0,, Co.-7:rr-, X.

1. REPORT NUMBER 12. GOVI ACCESSION NO. 3. RECIPIENI'S CATALOG NULMBER

4. TITLE (andSubr,r'e) 5. TYPE Of REPORT A PERIOD COvERED

o Ada Compiler Validation Summary Report: InterACT 16 Nov. 1989 to 16 Nov. 1990
Corporation, InterACT Ada 1750A Compiler System Release 3. RMN
VAXil (Host) to Fairchild 9450/1750A in a HP 64000 Work- PERFORMING.*R6. REPORT NUMER

.a.,un Ta~ret). 891116S1.10232
(CJ 7. AUTHOR(s) 8. CONTRACT OR &PANT NUMBER(s)

N National Institute of Standards and Technology
S Gaithersburg, Maryland, USA

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PRC.ECT. TASK
AREA A WORK UNIT NUMaERS

National Institute of Standards and Technology
S Gaithersburg, Maryland, USA

11. CONTRO.LING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office
United States Department of Defense I .. MO:. FA6Lb
Washington, DC 20301-3081

14. MONITORING AGENCY NAME & ADORESS(f different from Controlling Office) 15. SECURITY CLASS (of th, repolt)

•UNCLASSIFIED
National Institute of Standards and Technology 154. 5C,., CTI

Gaithersburg, Maryland, USA N/A

IS. DISTRIBUTION STATEMENT (ofthiReport)

Approved for public release; distribution unlimited.

17. DISTRS,..TION STATEMENT (of the abnract enteed i Block20 Ifd,f'ferentfrom Repo-1)

UCLASSIFIED D I
DTID

19. KEYwORDS (Con'inue on reverse sdo of necessar) end identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
CoI piler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side of necessary andi enitf) by block number)

InterACT Corporation, InterACT Ada 1750a Compiler System Release 3.3, Gaithersburg, MD
VAX1l 785 under VMS 4.5(Host) to Fairchild 9450/1750A in an HP 64000 Workstation (bare
machine), ACVC 1.10.

DE 'UK" 1473 EDITION OF 1 0ov 65 IS OBSOLETE

I JAN 73 S/N O10?-LF-014-SBOI UNCLASSIFIED
SECURIT, CLASSIVICAION Of 114I$ PAE (4v,',ert fna e(edJ

p0 04 24 094

AVF Control Number: NIST89ACT575_11.10

1 February 1990

Ada COMPILER
VALIDATION SUMMARY REPORT:

Cezrtiiicate Number: 891116S1.10232
InterACT Corporation

InterACT Ada 1750A Compiler System Release 3.3
VAXll Host and Fairchild 9450/1750A in a HP 64000 Workstation Target

Completion of On-Site Testing:

16 November 1989

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

Ada Compiler Validation Summary Report:

Compiler Name: InterACT Ada 1750A Compiler System Release 3.3

Certificate N.umber: 891116S1.10232

Host: VAXIl 785 under VMS 4.5

Target: Fairchild 9450/1750A in an HP 64000 Workstation (bare

machine)

Testing Completed 16 November 1989 Using ACVC 1.10

This report has been reviewed and is approved.

/

Ada Validato.nef i y Ada Va'lidation Facifity

Dr. David K. Jeffer o Mr. L. Arnold Johnson

Chief, Information Systems Manager, Software Standards
Engineering Division Validation Group

National Computer Systems National Computer Systems
Laboratory (NCSL) Laboratory (NCSL)

National Institute of National Institute of
Standards and Technology Standards and Technology

Building 225, Room A266 Building 225, Room A266

Gaithersburg, MD 20899 Gaithersburg, MD 20899

V T
f7" Ada Validation Organization i..t tio For-

Dr. John F. Kramer ,'S C.A&I

Institute for Defense Analyses " .

Alexandria VA 22311 U -j, o d

Ada Joint Program Office
Dr. John Solomond C',,l'b [y (odes
Director ,
Department of Defense 1I..

Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUtiHARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMiARY REPORT 1-2

1.3 REFERENCES1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2

3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-5
3.7 ADDITIONAL TESTING INFORMATION3-6

3.7.1 Prevalidation 3-6
3.7.2 Test Method 3-6
3.7.3 Test Site 3-7

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY

InterACT Corporation

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability.(ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the process of testing this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure
conformity of the compiler to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted
by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

1-I

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by GEMMA Corporation under the
direction of the AVF according to procedures established by the Ada
Joint Program Office and administered by the Ada Validation Organization
(AVO). On-site testing was completed 16 November 1989 at InterACT
Corporation, 417 Fifth Avenue, New York, New York, 10016.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information
Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Software Standards Validation Group

National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses

1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, Version 2.0, May 1989.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada An Ada Commentary contains all information relevant to
the Commentary point addressed by a comment on the Ada
Standard. These comments are given a unique

identification number having the form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and

1-3

technical support for Ada validations to ensure

consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and

interpreters.

Failed test An ACVC test for which the compiler generates a result

that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the

compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the

Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise

one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check

test conformity to the Ada Standard. A test may be

incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their

results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is used at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test

1-4

to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resultinr .ompilation listing is examined to verify that every
syntax or seman'ic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the

compiler,

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, an attempt to execute the main program must generate an error
message before any declarationsin the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errora during compilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,

1-5

FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure
CHECKFILE is used to check the contents of text files written by some
of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters, use small numeric
values, and place features that may not be supported by all

implementations in separate tests. However, some tests contain values

that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass

criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an

implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this validation
are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: InterACT Ada 1750A Compiler System Release 3,3

AC'7C Version: -10

Certificate Number: 891116S1 10232

Host Computer:

Machine: VAXll 785

Operating System: VMS 4.5

Memory Size: 16 MB

Target Computer:

Machine: Fairchild 9450/1750A in a Hewlett Packard
64000 Workstation (bare machine)

Operating System: none

Memory Size: 64 KB

Communications Network: VAX/64000 Interface Software

The InterACT Ada compiler and linker run on VAX/VMS and produce 1750A
load module files on the VAX. These modules are in InterACT 1750A

Linker format. An InterACT proprietary tool, ADA HP is then run on the
VAX to produce load modules files in Hewlett Packard (HP) 64000 format.

HP's VAX/64000 interface software is then used to transfer the load
module to the HP 64000 Workstation, containing the 1750A chip (a
Fairchild 9450), run the load module on the 1750A processor, and then
transfer output from the run back to the host VAX. This transfer-run-

2-1

transfer sequence is entirely under VAX/VMS control and requires no
manual intervention at the workstation. The output produced during the

run is created using 64000 simulated disk I/O.

2.2 IMPLEMENTATIGN CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following
characteristics:

a. Capacities

(1) The compiler correctly processes a compilation containing
723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8

tests) .)

(3) The compiler correctly processes tests containing block

statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedur-s separately compiled as subunits nested to 10
levels. The compiler may process tests :ontaining
recursive procedures separately compiled as subunits nested
to 17 levels; owever, due to insufficient memory in the
target (64K), all compilation units could not be
successfully linked together causing test D64005G to be

declared inapplicable (See tests D64005E,F (2 tests).)

b. Predefined types.

(1) This implementation supports tne additional predefined
types LONGINTEGER and LONGFLOAT in the package STANDARD.

(See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The ordcr in which expressions are evaluated and the time at
which constraints are checked are not defined Ly the language.

'hile the ACVC tests do not specifically attempt to determine
the order of e-aluation o' expressions, test results indicate

the following:

2-2

(I) Apparently all default initialization expressions or record

components are not evaluated before any value is checked
for membership in a component's subtype. (See test
C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERIC ERROR is raised when a literal operand in a
comparison or membership is outside the range of predefined
Integer and in a comparison or membership test that is

greater than System.Max_Int. No exception is raised when
an integer literal operand in a comparison is outside the

range of the base type. (See test C45232A.)

(5) NUMERIC_ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the

range of the base type. (See test C45252A.)

(6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)

d. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. while the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The m.ethod used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round
away from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds

STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this

implementation:

2-3

(1) DeclaraLion of an array type or subtype declaration with
more than SYSTEM.MAX INT components raises no exception.
(See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERICERROR is raised when 'LENGTH is applied to an array

type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC ERROR when the array objects
are declared. (See test C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises a NUMERICERROR when the
subtype is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than

INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERIC ERROR when the array type is
declared. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is

compatible with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is

not evaluated in its entirety before CONSTRAINTERROR is

raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRA7NTERROR is raised when checking whether the
expression's subtype is compatible with the target's

subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the
test results indicate that index subtype checks are made as

choices are evaluated. (See tests C43207A and C43207B.)

2-4

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate
does not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is supported for functions or procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies can be compiled in
separate compilations. (See test CAI012A.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See tests CA1012A and CA2009F.)

(4) Generic library subprogram specifications and bodies can
be compiled in separate compilations. (See test CAlOI2A.)

(5) Generic non-library subprogram bodies can be compiled in
separate compilations from their stubs.(See test CA2009F.)

(6) Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies can be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits can be
compiled in separate compilations. (See test CA2009C.)

Input and output.

(1) The package SEQUENTIAL_10 can be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE2101C,
EE2201D, and EE2201E.)

2-5

(2) The package DIRECT_10 can be instantiated with
unconstrained array types or record types with
discriminants without defaults. (See tests AE21OIH,

EE2401D, and EE2401G.)

(3) The director, AJPO, has determined (AI-00332) that every
call to OPEN and CREATE must raise USE ERROR or NAMEERROR
if file input/output is not supported. This implementation

exhibits this behavior for SEQUENTIALIO, DIRECTIO, and
TEXTIO except for text 10 standard input and output.

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 776 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
285 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for 9 tests were required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SLtARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL

A B C D E L

Passed 123 1129 1570 16 13 46 2897

Inapplicable 6 9 745 1 15 0 776

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SL.tMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 192 542 496 245 171 99 159 331 135 36 250 165 76 2897

Inapplicable 20 107 184 3 1 0 7 1 2 0 2 204 245 776

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C

CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M

CD2A84N CD2B15C CD2DIlB CD5007B CD50110 CD7105A
CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C

CE330IA CE3411B E28005C ED7004B ED7005C ED7005D

ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of

features that a compiler is not required by the Ada Standard to support.

Others may depend on the result of another test that is either

inapplicable or withdrawn. The applicability of a test to an

implementation is considered each time a validation is attempted. A

test that is inapplicable for one validation attempt is not necessarily
!:-applicable for a subsequent attempt. For this validation attempt, 776

tests were inapplicable for the reasons indicated:

a. The following 285 tests are not applicable because they have
floating-point type declarations requiring more digits than

SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)

3-2

C35706F..Y (20 tests) C35707F. .Y (20 tests)
C35708F..Y (20 tests) C35802F. .Z (21 tests)
C45241F..Y (20 tests) C45321F. .Y (20 tests)
C45421F..Y (20 tests) C45521F. Z (21 tests)

C45524F..Z (21 tests) C45621F. .Z (21 tests)
C45641F..Y (20 tests) C46012F. Z (21 tests)

b. The following 170 tests are not applicable because 'SIZE
representation clauses are not supported.

A39005B CD1009B
CD1009P CD2A21A .E (5 TESTS)
CD2A22A..J (10 TESTS) CD2A23A. .E (5 TESTS)
CD2A24A..J (10 TESTS) CD2A31A. .D (4 TESTS)
CD2A32A..J (10 TESTS) CD2A41A. .E (5 TESTS)
CD2A42A..J (10 TESTS) CD2A5A. .E (5 TESTS)
CD2A52A..D (4 TESTS) CD2A52G. .J (4 TESTS)
CD2A53A..E (5 TESTS) CD2A54A. .D (4 TESTS)
CD2A54G..J (4 TESTS) CD2A64A. .D (4 TESTS)
CD2A65A..D (4 TESTS) CD2A61A. .L (12 TESTS)
CD2A62A..C (3 TESTS) CD2A71A. .D (4 TESTS)
CD2A72A..D (4 TESTS) CD2A74A. .D (4 TESTS)
CD2A75A..D (4 TESTS) CD2A81A. .F (6 TESTS)
CD2A83A..C (3 TESTS) CD2A83E. .F (2 TESTS)
CD2A84B..I (8 TESTS) CD2A84K. .L (2 TESTS)
CD2A87A CD2A91A. .E (5 TESTS)
CDlC03A CDlCO4A
CDIC04C CD1009A
CD1009C..I (7 TESTS) CD10090
CDIO09Q ED2A26A

ED2A56A ED2A86A.

c. C355081, C35508J, C35508M, C35508N,C87B62A, ADlC04D, AD3015C,

AD3015F, AD3015H, AD3OI5K, CDIC04B, CDICO4E, CD3015A..B (2
TESTS), CD3015D..E (2 TESTS), CD3015G, CD3015I, CD3015J,
CD3015L, CD4051A..D (4 TESTS) these 24 tests are not applicable
because representation clauses are not supported for derived
types.

d. C35702A and B86001T are not applicable because this

implementation supports no predefined type SHORTFLOAT.

e. The following 16 tests are not applicable because this
implementation does not support a predefined type
SHORTINTEGER:

C45231B C45304B C45502B C45503B
C45504B C45504E C45611B C45613B
C45614B C45631B C45632B B52004E
C55B07B B55BO9D B86001V CD7101E

3-3

f. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because fixed point definitions are not supported.

g. D64005G is not applicable because there is insufficient space
in 64k memory for all the compilation units to be successfully
linked together (this implementation does support nesting 17
levels of recursive procedure calls.).

h. B86001X, C45231D, and CD71OIG are not applicable because this
implementation does not support any predefined integer type
with a name other than INTEGER or LONGINTEGER.

i. B86001Z is not applicable because this implementation supports
no predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

j. B86001Y is not applicable because this implementation
supports no predefined fixed-point type other than DURATION.

k. C86001F is not applicable because, for this implementation, the
package STRING OUTPUT is dependent upon package SYSTEM. These
tests recompile package SYSTEM, making package STRINGOUTPUT,
and hence package REPORT, obsolete.

1. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

m. CA2009C, CA2009F, BC3204C, and BC3205D are not applicable
because this implementation requires that generic bodies be
located in the same file or precede the instantiation. In these
four tests the Generic bodies are all in separate files and
those files come after the instantiation. If either of these
two conditions were reversed, the tests would report passed and
would then be applicable.

n. CD4041A is not aplicable because alignment clauses are not
supported.

o. The following 13 tests are not applicable because, for this
implementation, address clauses are not supported for constant
scalar objects with static initial values:

CD5011B CD5011D CD5OIF CD5011H
CD5012C CD5012D CD5013B CD5013D CD5OI3F

CDS013H CD5013R CD5014U CD5014W

p. The following 245 tests are inapplicable because sequential,
text, and direct access files are not supported:

CE2102A..C (3 tests) CE2102G..H (2 tests)

CE2102K CE2102N..Y (12 tests)

CE2103A..D (4 tests) CE2104A..D (4 tests)

3-4

CE2105A..B (2 tests) CE2106A..B (2 tests)
CE2107A..H (8 tests) CE2107L
CE21O8A..B (2 tests) CE2108C..H (6 tests)
CE21O9A..C (3 tests) CE2110A..D (4 tests)
CE2111A..I (9 tests) CE2115A..B (2 tests)
CE2201A..C (3 tests) CE2201F..N (9 tests)
CE2204A..D (4 tests) CE2205A

CE2208B CE2401A..C (3 tests)
CE2401E..F (2 tests) CE2401H..L (5 tests)
CE2404A..B (2 tests) CE2405B
CE2406A CE2407A..B (2 tests)
CE2408A..B (2 tests) CE2409A..B (2 tests)
CE2410A..B (2 tests) CE2411A
CE3102A..B (2 tests) EE3102C
CE3102F..H (3 tests) CE3102J..K (2 tests)
CE3103A CE3104A..C (3 tests)
CE3107A..B (2 tests) CE3108A..B (2 tests)
CE3109A CE3110A
CE3111A..B (2 tests) CE3111D..E (2 tests)
CE3112A..D (4 tests)
CE3114A..B (2 tests) CE3115A
EE3203A CE3208A
EE3301B CE3302A
CE3305A CE3402A
EE3402B CE3402C..D (2 tests)
CE3403A..C (3 tests) CE3403E..F (2 tests)
CE3404B..D (3 tests) CE3405A
EE3405B CE3405C..D (2 tests)
CE3406A..D (4 tests) CE3407A..C (3 tests)
CE3408A..C (3 tests) CE3409A
CE3409C..E (3 tests) EE3409F
CE3410A CE3410C..E (3 tests)
EE341OF CE3411A,C (2 tests)
EE22001D,E (2 tests) EE2401D,G (2 tests)
CE3412A EE3412C
CE3413A CE3413C
CE3602A. .D (4 tests) CE3603A
CE3604A. .B (2 tests) CE3605A..E (5 tests)
CE3606A. .B (2 tests) CE3704A..F (6 tests)
CE3704M. .O (3 tests) CE3706D
CE3706F. .G (2 tests) CE3804A..P (16 tests)
CE3805A. .B (2 tests) CE3806A..B (2 tests)
CE3806D. .E (2 tests) CE3806G..H (2 tests)
CE3905A. .C (3 tests) CE3905L
CE3906A. .C (3 tests) CE3906E..F (2 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,

3-5

processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B Lest into subtests so that all
e-rors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that was not anticipated
bv the test (such as raising one exception instead of another).

Modification was required for 1 Class A test, AD7006A. LONG INTEGER was
substituted for INTEGER at line 21 in order to declare an integer type
whose range includes SYSTEM.MEMORYSIZE.

Modifications were required for 6 Class B tests.

The following tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B33301B B55AOlA BA1101B BCII09A BC1109C BC1109D

Modification was required for 1 Class C test, C87B62B. A length clause
specifying a collection size for type JUSTLIKELINK to prevent CHECK
from raising a STORAGEERROR.

Modification was required for 1 Class E test, EE3412C. Line 46 was
incremented by one since the limited subset of TEXT_10 that this
implementation uses, STRINGOUTPUT, does not increment the current line
as required by the test.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the InterACT Ada 1750A Compiler System Version 3.3 was
submitted to the AVF by the applicant for review. Analysis of these
results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

1.7.2 Test Method

Testing of the InterACT Ada 1750A Compiler Sytem version 3.3 using ACVC
Version 1.10 was conducted on-site by a validation team from the AVF.
The configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host computer: VAX11 785
Host operating system: VMS 4.5
Target computer: Fairchild 9450/1750A in a Hewlett

Packard 64000 Workstation

3-6

Target operating system: Bare machine
Compiler: InterACT Ada1750A Compiler System

Release 3.3

The host and target computers were linked via VAX/HP 64000 Interface
software.

A magnetic tape containing all tests except for withdrawn tests and
tests requiring unsupported floating-point precision was taken on-site
by the validation team for processing. This tape could not be read so
the prevalidation test suite was used to perform the on site validation.
A copy of this test suite was placed on magnetic tape and subsequently
compared to the original on site test suite and shown to be the same.

TEST INFORMATION

The test suite resided on disk. The full set of tests were compiled and
run on the VAX 11/785, and all executable tests were run on the
Fairchild 9450/1750A. Object files were linked on the host computer,
and executable images were transferred to the target computer via VAX
64000 Interface software. Results were printed from the host computer,
with results being transferred to the host computer via the interface
software.

The compiler was tested using command scripts provided by InterACT aild
reviewed by the validation team. The compiler was tested using the
default settings.

Tests were compiled, linked, and executed (as appropriate) using (a
single computer. Test output, compilation listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at InterACT Corporation, 417 Fifth Avenue, New
York, N Y 10016 and was completed on 16 November 1989.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

InterACT has submitted the following Declaration of Conformance
concerning the InterACT Ada 1750A Compiler System.

A-I

APPENDIX A

Declaration of Conformance

Customer: InterACT Corporation

Ada Validation Facility: National Institute of Standards and Technology

ACVC Version: 1.10

Ada Implementation

AdaCompflerName: InterACT Ada 1750A Compiler System

Version: 3.3

Host Computer System: VAX 11/785 VMS 4.5

Target Computer System: Fairchild 945)/1750A in a Hewlett Packard

64000 Workstation (bare machine)

Customer's Declaration

I, the undersigned, representing InterACT declare that InterACT has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
inplementation(s) listed in this declaration.

Signature Date

- I /

A-i

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent character'-stics of the InterACT Ada 1750 A
Compiler System Release 3.3, as described in this Appendix, are provided
by InterACT Corp. Unless specifically noted otherwise, references in
this appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not
a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32_768..32_767;

type LONGINTEGER is range -2147_483_648. .2_147483_647;

type FLOAT is digits 6 range -I.0*2.0**127..0.999999*2.0**127;

type LONGFLOAT is digits 9 range -1.0*2.0**127..0.99999999*2.0**127;

type DURATION is delta I.OE-04 range -214_748.3E8..214_748.3647;

.nd STANDARD;

B3-

Appendix F U
Appendix F of the Ada Reference Manual

This appendix describes all implementation-dependent characteristics of the Ada language as implemented by
the InterACT Ada 1750A Compiler, including those required in the Appendix F frame ofAda RM.

F.1. Predefined Types In Package STANDARD

This section describes the implementation-dependent predefined types declared in the predcfined package
STANDARD [Ada RVAnnex C], and the relevant attributes of these types.

Integer Types

Two predefined integer types are implemented, INTEGER and LONG-INTEGER. They have the following
attributes:

INTEGER'FIRST = -32 768
INTEGER'LAST 32 767
LNTEGER'SIZE = 16

LONG INTEGER'FIRST = -2 147 483 648
LONG INTEGER'LAST = 2 147 483 647
LONG-INTEGER'SIZE = 32

Floating Point Types

Two predefined floating point types are implemented, FLOAT and LONG FLOAT. They have the following
attributes:

FLOAT'DIGITS = 6
FLOAT'EPSILON - 9.53674316406250E-07
FLOAT'FIRST - -1.0 * 2.00127
FLOATLARGE 1 .93428038904620E + 25
FLOATLAST = 0.999999 * 2.0"'127

FLOATMACHINE EMAX - 127
FLOAT'MACHINE EMIN --128
FLOATMACHINE-MANTISSA = 23

F-2 Appendix F of the Ada Reference Manual

FLOAT'MACHINE OVERFLOWS = TRUE
FLOAT'MACHINE RADIX - 2
FLOAT'MACHINE ROUNDS = FALSE
FLOAT'MANTISSA - 21
FLOATSAFE EMAX - 127
FLOAT'SAFE-LARGE - FLOAT'LAST
FLOAT'SAFE-SMALL = 0.5 * 2.0"(-127)
FLOAT'SIZE - 32

LONG FLOAT'DIGITS - 9
LONG FLOAT'OrSILON - 9.31322574615479E-10
LONG FLOAT'FIRST - -1.0 * 2.0"'127
LONG FLOAT'LARGE - 2.0"124'(1.0-2.0"(-31))
LONG-FLOATLAST - .99999999* 2.0**127

LONG FLOATMACHINE EMAX 127
LONG FLOAT'MACHINE EMIN - 128
LONG FLOAT'MACHINE-MANTISSA - 39
LONG FLOAT'MACHINE OVERFLOWS TRUE
LONG FLOAT'MACHINE RADIX 2
LONG FLOAT'MACHI-NE ROUNDS FALSE
LONG FLOAT'MANTISSA - 31
LONG FLOAT'SAFE EMAX - 127
LONG FLOAT'SAFE LARGE = LONG FLOAT'LAST
LONG FLOAT"SAFE SMALL 0.5 * 2"(-127)
LONG FLOAT'SIZE - 48

Fixed Point Types

Two kinds of anonymous predefined fixed point types are implemented: fixed and longired. Note that these
names are not defined in package STANDARD, but are used here only for reference.

For objects of fixed types, 16 bits are used for the representation of the object. For objects of long-fixed types,
32 hits are used for the representation of the object.

Forfixed and longjfixed there is a virtual predefined type for each possible value of small [Ada RM 3.5.9]. The
possible values of small are the powers of two that are represent rible by a LONGFLOAT value (or if a length
clause is used, any number representable by a LONGFLOAT value).

The lower and upper bounds of these types are:

lower bound of fixed types = -32768 * small
upper bound offixed types = 32767 * small
lower bound of longfixed types -2 147 483 648 * small
upper bound of longixed types = 2147483647 * small

A declared fixed point type is represented as that predefinedfixed or longjixed type which has the largest value
of small not greater than the declared delta, and which has the smallest range that includes the declared range
constraint.

Any fixed point type T has the following attributes:

Appendix F of the Ada Reference Manual F-3

TMACHINE OVERFLOWS TRUE
"IMACHINE ROUNDS = FALSE

Te DURATION

The predefined fixed point type DURATION has the following attributes:

DURATION'AFT = 4
DURATION'DELTA = 1.OE-04
DURATION'FIRST = -214 7483648
DURATION'FORE = 7
DURATION'LARGE = DURATION'LAST
DURATION'LAST = 214 748.3647
DURATION'MANTISSA = 31
DURATION'SAFE LARGE = DURATION'LARGE
DURATION'SAFE SMALL = DURATION'SMALL
DURATION'SIZE = 32
DURATION'SMALL = 1.OE-04

F2. Pragmas
This section lists all language-defined pragmas and any restrictions on their use and effect as compared to the

definitions given in Ada RM,

Pragma CONTROLLED

This pragrna has no effect, as no automatic storage reclamation is performed before the point allowed by the
pragma.

Pragma ELABORATE

As in Ada RM.

Pragma INLINE

This pragma causes inline expansion to be performed, except in the following cases:

1. The whole body of the subprogram for which inline expansion is wanted has not been seen. This
ensures that recursive procedures cannot be inline expanded.

2. The subprogram call appears in an expression on which conformance checks may be applied, i.e., in a
subprogram specification, in a discriminant part, or in a formal part of an entry declaration or accept
statement. -#

3. The subprogram is an instantiation of the predefined generic subprograms
UNCHECKED CONVERSION or UNCHECKED DEALLOCATION. Calls to such subprograms
are expanded inline by the compiler automatically.

F-4 Appendix F of the Ada Reference Manual

4. The subprogram is declared in a generic unit. The body of that generic unit is compiled as a secon-
dary unit in the same compilation as a unit containing a call to (an instance of) the subprogram.

5. The subprogram is declared by a renaming declaration.

6. The subprogram is passed as a generic actual parameter.

A warning is given if inline expansion is not achieved.

Note that the primary optimizing effect of this implementation of inline expansion is the elimination or reduc-
tion of parameter passing code, rather the reduction of basic subprogram call overhead.

Pragma INTERFACE

This pragma is supported for the language names defined by the enumerated type INTERFACE LANGUAGE
in package SYSTEM. Languages other than BIF support Aida calls to subprograms whose bodies are written in
that language. Language BIF (for built-in function") supports inline insertion of assembly language macro invo-
cations; the macros themselves may cons;st of executions of 1750A hardware built-in functions, or of any
sequence of 1750A instructions. Thus, pragma INTERFACE (BIF) serves as an alternative to machine code
insertions.

Language ASSEMBLY

For pragma INTERFACE (ASSEMBLY), the compiler generates a call to the name of the subprogram. The
subprogram name must not exceed 31 characters in length. Parameters and results, if any, are passed in the
same fashion as for a normal Ada call (see Appendix P).

Assembly subprogram bodies are not elaborated at runtine, and no runtime elaboration check is made when
such subprograms are called.

Assembly subprogram bodies may in turn call Ada program units, but must obey all Ada calling and environ-
mental conventions in doing so. Furthermore, Ada dependencies (in the form of context clauses) on the called
program units must exist. That is, merely calling Ada program units from an assembly subprogram body will
not make those program units visible to the Ada Linker.

A pragrna INTERFACE (ASSEMBLY) subprogram may be used as a main program. In this case, the pro-
cedure specification for the main program must contain context clauses that will (transitively) name all Ada
program units.

If an Ada subprogram declared with pragma INTERFACE (ASSEMBLY) is a library unit, the assembled sub-
program body object code module must be put into the program library via the Ada Library Injection Tool (see
Chapter 7). The Ada Linker will then automatically include the object code of the body in a link, as it would the
object code of a normal Ada body.

If the Ada subprogram is not a library unit, the assembled subprogram body object code module cannot be put
into the program library. In this case, the user must direct the Ada Linker to the directory containing the object
code module (via the /user rts qualifier, see Section 5.1), so that the 1750A Linker can find it.

Language BIF

For pragma INTERFACE (BIF), the compiler generates an inline macro invocation that is the name of the
subprogram. The subprogram name must not exceed 31 characters in length. Subprogram parameters and
results, if any, are passed in the same fashion as for a normal Ada call (see Appendix P), except that the macro

Appendix F of the Ada Reference Manual F-5

invocation replaces the call. However, subprogram parameters may be passed in registers if pragma
INTERFACE PARAMETERS is used (see Section F.3.7). Use of this pragma, as well as pragma
INTERFACE SCRATCH and, if desired, pragma INTERFACE RESULT (again, see Section F.3.7) is recom-
mended for most efficient usage of pragma INTERFACE (BIF). No macro arguments are passed on the invo-
cation.

A macro file must exist at the time of the compile containing a macro definition with the same name as the sub-
program. This macro file must be available by one of the means documented in the InterACT 1750a4 Assembler
and Linker reer's. anual.

Languages JOVIAL and FORTRAN

These languages may also be specified for pragma INTERFACE, but are equivalent to language ASSEMBLY.
The compiler generates calls to such subprograms as if they were Ada subprograms, and does not do any spe-
cial data mapping or parameter passing peculiar to the InterACT JOVIAL or FORTRAN compilers.

Pragma LIST

As inAda RM.

Pragma MEMORY SIZE

This pragma has no effect. See pragma SYSTEM-NAME.

Pragma OPTIMIZE

This pragma has no effect.

Pragma PACK

This pragma is accepted for array types whose component type is an integer or enumeration type that may be
represented in 16 bits or less. The pragma has the effect that in allocating storage for an object of the array

type, the object components are each packed into the next largest 2" bits needed to contain a value of the com-
ponent type. For example, integer components with the range constraint -8 .. 7 are packed into four bits;
boolean c-.mponents are packed into one bit.

This pragma is also accepted for record types but has no effect. Record representation clauses may be used to
.pack' components of a record into any desired number of bits; see Section F.6.

Pragma PAGE

As in Ada RM.

Pragma PRIORITY

As in Ada RM. See the Ada 1750A Runtime Executive Programnmer's Guide for how a default priority may be
set.

Pragma SHARED

This pragma has no effect, in terms of the compiler (and a warning message is issued). However, based on the
current method of code generation, the effect of pragma SHARED is automatically achieved for all scalar and
access objects.

F-6 Appendix F of the Ada Reference Manual

Pragma STORAGEUNIT

This pragrna has no effect. See pragma SYSTEM-NAME.

Pragma SUPPRESS

Only the "identifier' argument, which identifies the type of check to be omitted, is allowed. The "[ON = >]
name" argument, which isolates the check omission to a specific object, type, or subprogram, is not supported.

Pragma S TPPRESS with all checks other than DIVISION CHECK and OVERFLOW -TCHECK results in the
corresponding checking code not being generated. The implementation of arithmetic operations is such that, in
general, pragma SUPPRESS with DIVISION CHECK and OVERFLOW CHECK has no effect. In this case,
runtime executive customizations may be used'to mask the overflow interrupts that are used to implement these
checks (see the Ada 1750A Runtime Executive Programmer's Guide for details). However, in certain cases
involving multiplication by constants or numeric type conversions, pragma SUPPRESS with
DIVISION CHECK or OVERFLOW CHECK results in code being generated such that the overflow inter-
rupt cannot occur.

Pragma SYSTEM NAME

This pragma has no effect. The only possible SYSTEM NAME is MIL STD 1750A. The compilation of
pragma MEMORY SIZE, pragma STORAGE-UNIT, or this pragma does not cause an implicit recompilation
of package SYSTEM.

F.3. Implementation-dependent Pragmas

F.3.1. Program Library Basis Pragmas

Certain pragmas defined by this Compiler System apply to Ada programs as a whole, rather than to indixdual
compilation units or declarative regions. These pragmas are

" NO DYNAMIC OBJECTS OR VALUES USED
* NO DYNAMIC-MULTI1);-vlENTSIONAL ARRAYS USED
• SET MACHINEf OVERFLOWS FALSE-FOR ANONYMOUS FIXED

These pragmas apply on a program library wide basis, and thus apply to any and all programs compiled and
linked from a given program library. The meanings of these pragmas is described in the subsections below;, the
way in which these pragmas are specified is described in this subsection.

These pragmas may only be specified within the implementation-defined library unit LIBRARY PRAG.MAS,
which in turn may only be compiled into a root (predefined) sublibrary. If either of these restrictions are not
honored, the pragmas have no effect.

The contents of this library unit when delivered are

Appendix F of the Ada Reference Manual F-7

package LIBRARYPRAGHAS Is

NO DYNAMIC OBJECTSORVALUESUSED : constant BOOLEAN := FALSE;

NODYNAMIC MULTIDIMESSIONALARRAYSUSED : constant BOOLEAN := FALSE;

SETMACHINEOVERFLOWSFALSEFOR ANONYMOUS FIXED : constant BOOLEAN := FALSE;

end LIBRARY PRAG.AS;

In order to specify any or all of the pragmas, the source for this package is modified to include the pragmas
after the constant declarations (the source file is defined by the logical name actbda library_pragmas). For
example,

package LIBRARYPRAGMAS Is

NODYNAMICOBJECTSOR VALUESUSED : constant BOOLEAN :x FALSE;

NO DYNAMIC MULTIDIMENSIONAL ARRAYS USED : constant BOOLEAN := FALSE;

SET -ACHINEOVERFLOWS FALSE FOR ANONYMOJS FIXED : constant BOOLEAN := FALSE;

pregme NO DYNAH 1COBJECTSORVALUESUSED;

pragma SETMACH I NEOVERFLOWSFALSEFORANONYMOUS_F I XED;

end LI BRARYPRAGMAS;

This modified source is then compiled into the predefined library.

In addition to the effects described in the subsections below, the pragmas have the effect of changing the initiali-
zation value to TRUE for the corresponding constant objects.

If unit LIBRARY PRAGMAS is modified and compiled by the user, it must be compiled before any other user
compilation unit. f it is not, the program will be erroneous.

Note that while these pragmas apply to an entire program library, it is possible to create more than one pro-
gram library (via the Ada PLU command create/root; see Chapter 3), with each library having these pragmas
specified or not according to user desire.

An example sequence for specifying the pragmas for the delivered program library:

$ set def sysSuser.[librarles]
$ copy actada_librarypragmas []librarypragmas_sada
$ eve librarypragmas_sada
< add desired pragmas, as described above>
$ ada/lib=predefined library librarypragmas s
$ ada/plu I create user libraries under predefined
create applicationalb predefined library
exit
S define ada library applicationalb

An example sequence for specifying the pragmas for a new program library, leaving the delivered program
library intact:

F-8 Appendix F of the Ada Reference Manual

S set def sys$user. [libraries]
$ ada/plu I create new predefmed library
create/root pragmasrootalb
exit
$ copy actada_library_pragmas []library_pragmass.ada
$ eve library_pragmas s.ada
<add desired pragmas, as described above>
$ ada/lib=pragmas root.aib library_pragmas_s
$ ada/plu I create user libraries under new predefined
create applicatlon.alb pragmas rootalb
exit
$ define ada library applicatlon.alb

F.3.2. Pragma NO DYNAMIC OBJECTSOR VALUF-USED

This pragma works on a program library basis. See the subsection at the beginning of this section for how such
pragmas are used.

Use of this pragma informs the compiler that all created objects and all computed values have statically known
sizes. The language usages that do not meet this assertion are

* T'IMAGE for integer types

* arrays objects or values of (sub)types with non-static index constraints, or with component subtypes
with non-static index constraints

* array aggregates of an unconstrained type

" catenations (even with statically sized operands)

* collections with non-static sizes

Programs that violate the assertion of this pragma are erroneous.

The effect of this pragma is to use a different, and more efficient, set of compiler protocols for runtime stack
organization and register usage. These variant protocols are described in Appendix P.

F.33. Pragma NO DYNAMICMULTIDIMENSIONAL_.ARRAYSUSED

This pragma works on a program library basis. See the subsection at the beginning of this section for how such
pragmas are used.

Use of this pragma informs the coml'der that all declarations of multidimensional array types or objects have
static index constraints [Ada RM 4.9 (11)], and that the component subtypes of such arrays, if arrays them-
selves, also have static index constraints. That is, all multidimensional arrays have statically known size. Pro-
grams that violate the assertion of this pragma are erroneous.

The effect of this pragma is to use a special technique, known as bias vectors, in the generated code for the cal-
culation of array indexed component offsets for multi-dimensional arrays. This technique involves building a
data structure that contains some precomputed offsets, and then indexing into that structure. The major advan-
tage of this technique is that few or no multiplication operations need be generated.

Appendix F of the Ada Reference Manual F-9

The bias vector data structures are allocated as part of elaboration of the constrained array subtype declaration
(or object declaration that implicitly declares such a subtype).

Bias vectors are not used if the array index base type is LONG INTEGER or if pragma PACK applies to the
array.

F.3.4. Pragmas ESTABLISH OPTIMIZEDREFERENCE and ASSUMEOPTIMIZEDREFERENCE

These pragmas are used to direct the compiler to generate code that more efficiently references objects in a
package. This efficiency is achieved by using a base register to address the package objects.

Pragma ESTABLISH OPTIMIZED REFERENCE instructs the compiler to load a base register with the
beginning address of the objects in the designated package, and to access such objects using the base register.
The pragma has the form

pragma ESTABLISHOPTIMIZED REFERENCE (packagename);

The pragma may appear anywhere within a program unit; the load and subsequent usage of the base register
will begin at the point of the pragma appearance. The pragma applies only to the program unit it appears in; it
does not apply to program units nested within that unit.

Pragma ASS:.JME OPTLMIZED REFERENCE instructs the compiler to assume that the designated
package's beginning address has been loaded into a base register, and to access such objects using the base
register. The pragma has the form

pragma ASSUME OPTIMIZEDREFERENCE (packagename);

The pragma should appear at the beginning of the declarative part of a program unit. The pragma applies only
to the program unit it appears in; it does not apply to program units nested within that unit. It is not necessary
to use this pragma after an instance of pragma ESTABLISH OPTIMIZED REFERENCE; rather, it must be
used in program units that are called from the unit that contains the pr 'gma
ESTABLISH- OPTIMIZED REFERENCE. If there are intervening (in terms of calls) units between the unit
containing pragrna ESTABLISH OPTIMIZED REFERENCE and the unit desiring to use pragma
ASSUME OPTIMIZED REFERENCE, then those intervening units must also use pragma
ASSUME OPTIMIZED REFERENCE.

The pragmas apply only to packages that are library units. Only the objects in the specification part of the
package, and within base register range of the package beginning, are accessed by base register.

Only one base register is used by these pragmas, that being register 12. Thus, the pragmas can be in effect for
only one package at any given time during execution.

An example of the use of these pragntas:

package GLOSAL.VARS is

end GLOBALVARS;

with GLOBALVARS; use GLOBALVARS;
procedure P is

pragma ESTABLISHOPTINIZEDREFERENCE (GLOBALVARS);

F-1O Appendix F of the Ada Reference Manual

procedure INNER Is
pragma ASSUMEOPTIMIZEDREFERENCE (GLOBAL VARS);

begin

end INNER;

begin

'NNER;

e.nd P;

F-3.5. Pragma EXPORT

This pragma is used to define an external name for Ada objects, so that they may be accessed from non-Ada
routines. The pragma has the form

pragma EXPORT (objectname [,external narnestring literal]);

The pragma must appear immediately after the associated object declaration. If the second argument is omit-
ted, the object name is used as the external name. If the resulting external name is longer than 31 characters, it
will be so truncated.

The associated object must be declared in a library package (or package nested within a library package), and
must not be a statically-valued scalar constant (as such constants are not allocated in memory).

Identical external names should not be put out by multiple uses of the pragma (names can always be made
unique by use of the second argument).

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;
pragma EXPORT (ABLE);

BAKER : STRING(1..8);
pragma EXPORT (BAKER, "gtobat.baker");

end GLOBAL;

may be accessed in the following assembly language routine

MODULE LOW LEVEL
CSECT ClE

EXTREF ABLE
LDL ABLE,RO . ; get value of ABLE
EXTREF GLOBAL.BAKER
LD OGLOBAL.BAKER,R2 ; get address of BAKER

END

Appendix F of the Ada Reference Manual F-11

F3.6. Pragma IMPORT

This pragma is used to associate an Ada object with an object defined and allocated externally to the Ada pro-
gram.

pragma IMPORT (object name [exemalnamestringlteral]);

The pragma must appear immediately after the associated object declaration. If the second argument is omit-
ted, the object name is used as the external name. If the resulting external name is longer than 31 characters, it
will be so truncated.

The associated object must be declared in a library package (or package nested within a library package). The

associated object may not have an explicit or implicit initialization.

As an example of the use of this pragma, the objects in the following Ada library package

package GLOBAL is

ABLE : FLOAT;
pragma iMPORT (ABLE);

BAKER : STR!NG(I..8);
pragma IMPORT (BAKER, "gtobat.baker");

end GLOBAL;

are actually defined and allocated in the following assembly language module

MODULE GLOBALVALUES
CSECT DATA

EXTDEF ABLE
ABLE RES 2

EXTDEF GLOBAL.BAKER
GLOBAL.SAKER DATAC labcdefgh'

END

F-3.7. Pragmas INTERFACEPARAMETERS, INTERFACERESULT and INTERFACE-SCRATCH

These pragmas are used in conjunction with pragma INTERFACE (BIF) to name the specific 1750A machine
registers to be used during BIF processing.

The type PRAGMA INTERFACE PARAME.TER LOCATIONS in package SYSTEM defines names for the
1750A machine registers that must beused in association with these pragmas.

Registers 10, 11, and 15 should not be used with these pragmas as they serve special purposes in the compiler
(see Appendix P for details). If they are used, it is the user's responsibility to save and/or restore the registers
inside the BIF macro.

Sample usage of these pragmnas:

F-12 Appendix F of the Ada Reference Manual

function BIT OPERATION (X, Y : INTEGER) return INTEGER;
pr37m INTERFACE (BIF, BITOPERATION);
pragma INTERFACE PARAMETERS (BITOPERATION, X => R4, Y => R5);
pragma INTERFACE RESULT (BIT OPERATION, R9);
prag"a INTERFACE SCRATCH (BITOPERATION, R6, R3);

Pragma INTERFACE PARAMETERS specifies the 1750A machine registers that should be used to pass the
actual parameters of thfe subprogram. If this pragma is not specified, the subprogram parameters will be passed
according to standard compiler protocol (see Appendix P). The pragma has the form

pragma INTERFACE PARAMETERS (subprqgran_name,
parameter name = > pragma interface.pararneter-locations enumeration literal
[pararneter.name = > pragrna interfaceparametcrlocations e numeration literall);

Pragma INTERFACE RESULT specifies the 1750A machine register to be used for a function's return result.
If this pragma is not provided, registers will be used according to standard compiler protocol (see Appendix P).
The pragma %as the form

prag-ma INTERFACE_RESULT (subprograrn name, pragma.interface parameter locations en u meration literal);

This pragma will only be accepted for a function and cannot be used if the result type is an array or record.

Pragma INTERFACE SCRATCH is used to identify the 1750A machine registers that will be used as scratch
registers inside the macro. If the pragma is provided, the compiler will only save those registers specified in the
pragrna prior to BIF execution. If this pragma is not provided, the compiler will save all necessary registers
prior to BIF execution. The pragma has the form

pragma INTERFACE SCRATCH (subprogramname,pragmainterfaceparaneter locations enumeration literal
[vragma interface param eter..locations enumerationliteral]);

F.3.8. Pragma INTERFACE SPELLING

This pragma is used to define the external name of a subprogram written in another language, if that external
name is different from the subprogram name (if the names are the same, the pragma is not needed). The
pragma has the form

pragma INTERFACE SPELLING (subprogram name, etemalname string literal);

The pragma should appear after the pragma INTERFACE for the subprogram. This pragma is useful in cases
where the desired external name contains characters that are not valid in Ada identifiers. For example,

procedure CONNECT BUS (SIGNAL : iNTEGER);
pragma INTERFACE (ASSEMBLY, CONNECT BUS);
pregma INTERFACE SPELLING (CONNECT_BUS, "SCONNECT.BUS");

Appendix F of the Ada Reference Manual F-13

F.3.9. Pragma MEMORY UNIT

This pragma is used in the Compiler System's support for memory association. Th;s is where Ada objects
(whether variables or constants) are associated at compile time with different classes of memory. Then at link
time, these classes of memory can be treated differently. For instance, objects can be associated with fast
memory or slow memory, with locl or global memory in a multiprocessor environment; with different areas of
memory in a rignal processor/array processor/SIMD tpe of architecture; and so on.

The classes of memory are implemented through the InterACT 1750A Linker CSEC and section facilities (see
InterA CT Lfnker Reference Manual for a complete description of these facilities).

The types MEMORY SECTION NUMBER and USER MEMORY SECTIONS in package SYSTEM define
the CSECT numbers available for use in connection with this pragma; the first type defines all those available
in the 1750A Linker, the second subtype those available to users (not reserved by the compiler or runtime exe-
cutiv.).

The basic scheme of the memory association support is that the user defines an enumeration type naming the
different classes of memory, and then a enumeration representation clause assigning each of those classes to a
CSECT number. Pragma MEMORY UNIT is then defined for Ada objects (or types, applying to all objects of
the type), specifying the memory class for that object. The compiler allocates the object in a CSECT with the
corresponding CSECT number. The user then creates 1750A Linker SECTION control statements to dtlocate
the memory classes as desired.

The following type declarations define the memory classes. The user must code them, and they must be visible
whcrever pragma MEMORY UNIT appears.

type MEMORY UNIT is
(memoryunit enumeration literal [,nernory.unit enumeration literall);

subtype RESERVED MEMORY UNITS is MEMORY UNIT range
memoryunitenumeration literal.,mnemory unit enumeration literal

for MEMORY UNIT use
(mernory uniT enumeration-literal =-> csect number
i,memory unit enumeration literal = > csect.number]);

The first declaration defines all the types of memory that (static data and literal) objects and types can be asso-
ciated with, and the CSECT numbers to which they will be allocated. The second declaration specifies which of
these kinds of memory may share a CSECT with existing compiler CSECTs (e.g. if
me"zoryunit enumeration iteral is to contain both the stack/heap and some static data).

Associations of particular objects and types to memory is accomplished by the following:

pragma MEMORYUNIT (memory unit enumeration literal, simple-name[,simple.name]);

where simple-name is a type or object. Up to 32 objects and 32 data types may be specified within each
occurrence of the pragma.

Any base type, derived type, or objects of them may be associated. Only one association is allowed for a type or
an object. Once a type is associated, all objects of that type inherit the association. When associating a type, it is
necessary for the type to be declared in same package as the pragma, and the pragma to be located before any
objects of that type are declared. Any object can be associated providing that its type was not associated.

F-14 Appendix F of the Ada Reference Manual

This pragma may be used in any compilaton unit but subprogram variables may only be associated with a
memory that shares the heap/stack area.

This pragma cannot b'. used in conjunction with address clauses, collections or pragmas
ESTABLISH OPTIMIZED REFERENCE and ASSUL,ME OPTMIZED REFERENCE.

F.3.10. Pragma SETMACIINEOVERFLOWSFALSEFORANONYMOUSFIXED

This pragma works on a program' library basis. See the subsection at the beginning of this section for how such
pragmas are used

The effect of this pragma is that any fixed point type T of anoymous predefined fixed type (i.e., represented in
16 bits) has the attribute

MACHINE OVERFLOWS = FALSE

such that NUMERIC ERROR is not raised in overflow situations [Ada kV 4.5.7 (7)].

The result of operations in overflow situations is either tb. lower or upper bound of the 'virtual" predefined
type for T ([4da RM 3.5.9 (10)], this document Sectioa F.1), depending on the direction of overflow. These
bounds are -32768 * T'SMALL and 32_767 * TSMALL respectively. These bounds will equal T'FIRST and
T'LAST if the range constraint for T is so leclared.

Note that this implementation of fixed point types relies on the 1750A fixed point overflow interrupt being
enabled and not masked; any user exit or customization routines in the Ada runtime executive must not do
differently.

F.3.11. Pragma SUBPROGRAMSPELLING

This pragma is used to define the external name of an Ada subprogram. Normally such names are compiler-
generated, based on the program library unit number. The pragma has the form

pi-agma SUBPROGRAM. -'LLLING (subprogram name [,extemal.name string_literal]);

The pragma is allowed wherever a pragma INTERFACE would be allowed for the subprogrim. If the second
argument is omitted, the subprogram name is used as the external name. If the resulting external name is
longer than 31 characters, it will be so truncated.

This pragma is useful in cases where the subprogram is to be referenced from another language.

Appendix F of the Ada Reference Manual F- 15

F.4. Implementaton-dependent Attributes

None are defined.

F.1. Package SYSTEM

The specification of package SYSTEM is:

package SYSTEM is

type ADDRESS Is new INTEGER;
ADDRESS NULL : constant ADDRESS : = 0;

type NAME Is (MIL STD_1750A);

SYSTEM NAME : constant NAME := MIL STD_1750A;

STORAGE UNIT :constant:= 16;
MEMORY SIZE constant : 64 * 1024;

MIN INT constant := -2 147 483 647-1;
MAX INT .constant: 2 147 483 647;
MAX-DIGITS constant: 9;
MAX MANTISSA : constant:= 31;
FINE DELTA constant := 1.0 / 2.0 * MAX MANTISSA;
TICK- constant := 0.000100;

subtype PRIORITY Is INTEGER range 0..255;

type INTERFACE LANGUAGE is (ASSEMBLY, BIF, JOVIAL, FORTRAN);

type MEMORY SECTION NUMBER Is range 0.31;
subtype USER_&MEMORY SECTIONS is MEMORY SEC-ION NUMBER range 16

type PRAGMA LNTERFACE PARAMETERLOCATIONS is (RO, R1, R2, R3, R4, R5, R6, R7, R8,
R9, R10, R11, R12, R13, R14, R15);

end SYSTEM;

F.6. Representation Clauses

In general, no representation clauses may be given for a derived type. The representation clauses that are
accepted for non-derived types are described by the following:

Length Clause

The compiler accepts three kinds of length clauses, specifying the number of storage units to be reserved for a
collection (attribute designator STORAGESIZE), the number of storage units to be reserved for an activation
of a task (STORAGE SIZE), or the small for a fixed point type (SMALL). Length clauses specifying object
size for a type (SIZE) are not allowed.

F-16 Appendix F of the Ada Reference Manual

Enumeration Representation Clause

Enumeration representation clauses may only specify representations in the range of the predefined type
INTEGER.

Record Representation Clause

Alignment clauses are not allowed.

In terms of allowable component clauses, record components fall into three classes:

" integer and enumeration types that may be represented in 16 bits or less;

" statically-bounded arrays or records composed solely of the above;

* all others.

Components of the "16-bit integer/enumeration" class may be given a component clause that specifies a storage
place at any bit offset, and for any number of bits, as long as the storage place is large enough to contain the
component and does not cross a word boundary. Unsigned representations (for example, an integer with a
range of 0.3 being represented in two bits) are allowed, but the component subtype must belong to the
predefined integer base type normally associated with that many bits (for example, an integer with a range of
0..65 535 being represented in 16 bits is not allowed). Biased representations (for example, an integer with a
range of 7..10 being represented in two bits) are not allowed.

Components of the "array/record of 16-bit integer/enumeration" class may be given a component clause that
specifies a storage place at any bit offset, if the size of the array/record is less than a word, or at a word offset
otherwise, and for any number of bits, as long as the storage place is large enough to contain the component
and none of the individual integer/enumeration elements of the array/record cross a word boundary.

Components of the "all others' class may only be given component clauses that specify a storage place at a word
offset, and for the number of bits normally allocated for objects of the underlying base type.

Components that do not have component clauses are allocated in storage placed beginning at the next word
boundary following the storage place of the last component in the record that has a component clause.

Records with component clauses cannot exceed 2K words (32K bits) in size.

F.7. Implementation-dependent Names for Implementation-dependent Components

None arc defined.

Appendix F of the Ada Reference Manual F-17

F.8. Address Clauses

In general, address clauses are allowed for objects, for subprogram and task units, and for interrupt entries.
Address clauses are not allowed for package units.

Addrzss clauses occurring within generic units are always allowed it that point, but are not aiiowed when the
anits ,, ntislidted if .L, do not conform to the implementation restrictions described here. In addition, the
effect of such address clauses may depend on the context in which they are instantiated (e.g. library package or
subprogram; see below).

Address Clauses for Objects or Subprogram Units

Address clauses for objects or subprogram units must be static expressions of type ADDRESS in package SYS-
TEM.

Address clauses are not allowed for constant scalar objects with static initial values, as such objects are not allo-
cated in memory.

Address clauses for objects declared within library packages cause the Compiler System to reserve space for the
object at that address, since the object exists for virtually the entire length of Ada program execution. Address
clauses for objects declared within subprograms do not cause space to be reserved for the object, since the
object only exists during the subprogram's execution. It is the user's responsibility to reserve space for such
objects (1750A Linker control statements may be used if desired).

Type ADDRESS is a 16-bit signed integer. Thus, addresses in the memory range 16#8000#..16#FFFF# (i.e.,
the upper half of 1750A memory) must be supplied as negative numbers, since the positive (unsigned) interpre-
tations of those addresses are greater than ADDRESS'LAST. Furthermore, addresses in this range must be
declared as named numbers, with the named number (rather than a negative numeric literal) being used in the
address clause. The hexadecimal address can be retained in the named number declaration, and user computa-
tion of the negative equivalent avoided, by use of the technique illustrated in the following example:

X : INTEGER;
ror X use at 16#7FFF#; -- legal

Y: INTEGER;
for Y use at 16#FFFF#; -- illegal

ADDR FFFF: constant : = 16#FFFF# - 65536;
Y: INfEGER;
for Y use at ADDRFFFF; -- legal, equivalent to unsigned 16#FFFF#

Address Clauses for Interrupt Entries

Address clauses for interrupt entries do not use type SYSTEM.ADDRESS; rather, the address clause must be a
static integer expression in the range 0..15, naming the corresponding 1750A interrupt.

The following restrictions apply to interrupt entries. The corresponding accept statement must have no formal
parameters and must not be part of a select statement. Direct calls to the entry are not allowed. If any excep-
tion can be raised from within the accept statement, the accept statement must include an exception handler.
The accept statement cannot include another accept statement for the same interrupt entry.

When the accept statement is encountered, the task is suspended. If the specified interrupt occurs, execution of

F-18 Appendix F of the Ada Reference Manual

the accept statement begins. When control reaches end of the accept statement, the special interrupt entry pro-
cessing ends, and the task continues normal execution. Control must again return to the point where the accept
statement is encountered in order for the task to be suspended again, awaiting the interrupt.

There are many more details of how interrupt entries interact with the 1750A machine state and with the Run-
time Executive. For these details, see the Ada 1750,4 Runtime Executive Programmer's Guide.

F.9. Unchecked Conversion

Unchecked conversion is only allowed between values of the same size. In addition, if
UNCHECKED CONVERSION is instantiated with an array type, that type must be statically constrained.
Note also that calls to UNCHECKED CONVERSION-instantiated functions are always generated as inline
calls by the compiler, and cannot be instantiated as library units or used as generic actual parameters.

Unchecked conversion operates on the data for a value, and not on type descriptors or other compiler-
generated entities (with the sole exception that records containing discriminant-dependent arrays have
compiler-generated extra components representing array type descriptors).

For values of an access type, the data is the address of the designated object; thus, unchecked conversion may
be done in either direction between access types and type SYSTEMADDRESS (which is derived from
INTEGER). The named number SYSTEM.ADDRESSNULL supplies the type ADDRESS equivalent of the
access type literal null.

For values of a task type, the data is the address of the task's Task Control Block (see the Ada 17504 Runtime
Executive Programmer's Guide).

F.10. Input-Output

The predefined library generic packages and packages SEQUENTIAL 10, DIRECT 10, and TEXT 10 are
supplied. However, file input-output is not supported except for the standard input and output files. Any
attempt to create or open a file will result in USE-ERROR being raised.

TEXT 10 operations to the standard input and output files are implemented as input from or output to some
visible device for a given implementation of MIL-STD-1750A. Depending on the implementation, this may be a
console, a workstation disk drive, simulator files, etc. See the Ada 1750.4 Runtime Executive Prcgrammer's
Guide for more details. Note that by default, the standard input file is empty.

The range of the type COUNT defined in TEXT 10 is 0.. LONGINTEGER'LAST.

The predefined library package LOWLEVEL1 is empty.

In addition to the predefined library units, a package STRING OUTPUT is also included in the predefined
library. This package supplies a very small subset of TEXT I0 operations to the standard output file. The
specification is:

Appendix F of the Ada Reference Manual F-19

package STRING-OUTPUT i

procedure PUT (ITEM: In STRING);

procedure PUT-LINE (ITEM: to STRING);

procedure NEW-LINE;

end STRINGOUTPUT;

By using the 'IMAGE attribute function for integer and enumeration types, a fair amount of output can be done
using this package instead of TEXT 10. The advantage of this is that STRING OUTPUT is smaller than
TEXT 10 in terms of object code size, and faster in terms of execution speed.

Use of TEXT 10 in multiprogramming situations (see Chapter 5) may result in unexpected exceptions being
raised, due to the shared unit semantics of multiprogramming. In such cases STRING OUTPUT may be used
instead.

F.11. Other Chapter 13 Areas

The following language features, defined in [Ada RM 131, are supported by the compiler:

* representation attributes [13.7.2 13.7.3]

" unchecked storage dealocation (13.10.11

Note that calls to UNCHECKED DEALLOCATION-instantiated procedures are always generated as inline
calls by the compiler, and cannot be instantiated as library units or used as generic actual parameters.

Change of representation [13.61 and machine code insertions [13.8] are not supported by the compiler. Note
that pragma INTERFACE (BI) may be used as an alternative to machine code insertions.

F.12. Miscellaneous Implementation-dependent Characteristics

Uninitialized Variables

There is no check to detect the use of uninitialized variables. The effect of a program that refers to the value of
an uninitialized variable is undefined. A compiler cross-reference listing may be of use in finding such vari-
ables.

F.13. Compiler System Capacity Limitations
4

The following capacity limitations apply to Ada programs in the Compiler System:

* the space available for the constants of a compilation unit is 32K words;

" the space available for the static data of a compilation unit is 32K words;

F-20 Appendix F of the Ada Reference Manual

" any single object can not exceed 32K words;

* the space available for the objects local to a subprogram or block statement is 32K words;

the names of all identifiers, including compilation units, may not exceed the number of characters
specified by the INPUT LINELENGTH component in the compiler configuration file (see Section
4.1.4);

0 a sublibrary can contain at most 4096 compilation units (library units or subunits). A program library
can contain at most eight levels of sublibraries, but there is no limit to the number of sublibraries at
each level. An Ada program can contain at most 32768 compilation units.

The above limitations are all diagnosed by the compiler. Most may be circumvented straightforwardly by using
separate compilation facilities.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST

in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

$ACC_SIZE 16
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGIDI <125*"A">l
Identifier the size of the
maximum input line length with
varying last character.

$BIGID2 <125*"A">2
Identifier the size of the
maximum input line langth with
varying last character.

$BIGID3 <62*"A">3<63*"A">
Identifier the size of the
maximum input line length with
varying middle character.

$BIGID4 <62*"A">4<63*"A">
Identifier the size of the
maximum input line length with
varying middle character.

$BIG_INTLIT <123*"0">298
An integer literal of value 298
with enough leading zeroes so

that it is the size of the
maximum line length.

BIGREALLIT <120*"0">69.0El
A universal real literal of
value 690.0 with enough leading

zeroes to be the size of the
maximum line length.

C-1

$BIGSTRINGI "<63""A">"
A string literal which when
catenated with BIG STRING2
yields the image of BIG IDI.

$BIGSTRING2 "<62""A">I"
A string literal which when
catenated to the end of
BIGSTRINGI yields the image of
BIGIDl.

$BLANKS 106
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2_147_483_647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 65536
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTORUNIT 16
An integer literal whose value
is SYSTEM.STORAGEUNIT.

$DEFAULTSYSNAME MILSTD_1750A
The value of the constant
SYSTEM.SYSTEM NAME.

$DELTADOC l.O/2.0**(SYSTEM.MAX MANTISSA)
A real literal whose value is
SYSTEM.FINEDELTA.

SFIELDLAST 35
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXEDNAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT_NAME NOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or

C-2

LONGFLOAT.

$GREATERTHANDURATION 214_748.3647
A universal real literal that

lies between DURATION'BASE'LAST
and DURATION'LAST or any value

in the range of DURATION.

$GREATERTHANDURATIONBASELAST 214_749.3647
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGHPRIORITY 255
An integer literal whose value
is the upper bound of the range

for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAMEl ILLEGALFILENAME_1
An external file name which
contains invalid characters.

$ILLEGALEXTERNALFILENAME2 ILLEGALFILENAME_2
An external file name which
is too long.

$INTEGERFIRST -32_768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGER LAST 32_767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LAST PLUS 1 32_768
A universal integer literal
whose value is INTEGER'IAST + 1.

$LESSTHAN_DLURATION -214_748.3648
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value

in the range of DURATION.

$LESS THAN DURATIONBASEFIRST -214_749.3648
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOWPRIORITY 0
An integer literal whose value

is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

C-3

$MANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

$MA&X_DIGITS 9
Maximum digits supported for
floating-point types.

$MAX IN LEN 126
Maximum input line length
permitted by the implementation.

$MAX_INT 2_147_483_647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 2_147_483_648

A universal integer literal
whose value is SYSTEM.MAXINT+l.

$M.X_LEN_INT_BASED_LITERAL 2:<121*"0">11:
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLENREALBASED LITERAL 16:<1I9*'0">F.E:
A universal real based literal
whose value is 16:F.E: with

enough leading zeroes in the
mantissa to be MAXINLEN long.

$k.X_STRINGLITERAL "<124""A">"
A string literal of size
MAX IN LEN, including the quote
characters.

$MININT -2_147_483_648
A universal integer literal
whose value is SYSTEM.MININT.

$MINTASKSIZE 16
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NA.ME NOSUCHINTEGERTYPE

A name of a predefined numeric

C-4

type other than FLOAT, INTEGER,
SHORTFLOAT, SHORT_INTEGER,
LONGFLOAT, or LONGINTEGER.

$N.AME_LIST MILSTD_1750A
A list of enumeration literals
in the type SYSTEM.NAME,

separated by commas.

SNEGBASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEW_MEM_SIZE 65536
An integer literal whose value
is a permitted argument for
pragma memorysize, other than
$DEFAULTMEM SIZE. If there is
no other value, then use

$DEFAULTMEMSIZE.

$NEWSTORUNIT 16
An integer literal whose value
is a permitted argument for
pragma storageunit, other than
$DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE-UNIT.

$NEWSYS NAME MILSTD_1750A
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 16
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

$TICK 0.000_100
A real literal whose value is

SYSTEM.TICK.

C-5

APPENDIX D

WITHDRAWN TESTS

Some tests Are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time

of validation testing for the reasons indicated. A reference of the
form AI-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative

(line 31).

C97116A
This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implementation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &

54 and the execution of task CHANGING OF THEGUARD results in a call to

REPORT.FAILED at one of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality

need not be detected until execution is attempted (line 95).

CD2A62D

This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
"Ada standard 3.4:14)). Additionally, they use the 'SIZE length clause
and attribute, whose interpretation is considered problematic by the WG9
ARG.

CD2A81G, CD2A83G, CD2A84M & N, & CD50110

These tests assume that dependent tasks will terminate while the main
program executes a loop that simply tests for task termination; this is

not the case, and the main program may loop indefinitely (lines 74, 85.

86 & 96, 86 & 96, and 58, resp.).

CD2BI5C & CD7205C
These tests expect that a 'STORAGESIZE length clause provides precise

D-1

control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values

of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

EDTOO4B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYeTEM
prigmas; the AVO withdraws these tests as being inappropriate for
validation.

CD71O5A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by iommentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test c-necks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE21071
This test requires that objects of two similar scalar types be
distinguished when read from a file--DATAERROR is expected to be raised
by an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
Thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to END OF LINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARD INPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST

D-2

in order to check that LAYOUTERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C
This test expects that the string "-- TOP OF PAC". --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

InterACT Corporation

Compiler: InterACT Ada 1750A Compiler System
Version 3.3

ACVC Version: 1.10

E-1

Chapter 4
The Ada Compiler

The Ada Compiler translates Ada source code into MIL-STD-1750A object code.

Diagnostic messages are produced if any errors in the source code are detected. Warning messages are also
produced when appropriate.

Compile, cross-reference, and generated assembly code listings are available upon user request.

The compiler uses a program library during the compilation. An internal reprcsentaton of the compilation,
which includes any dependencies on units already in the program library, is stored in the'program library as a
result of a successful compilation.

On a successful compilation, the compiler generates assembly code, invokes the lnterACT 1750A Assembler to
translate this assembly code into object code, and then stores the object code in the program library. (Option-
ally, the generated assembly code may also be stored in the library.) The invocation of the Assembler is com-
pletely transparent to the user.

4.1. The Invocation Command

The Ada Comtpiler is _xcked by submitting the fotiowing VAX/VMS command:

S ada1750{qualifier) source-file-spec

4.1.1. Parameters and Qualifiers

Default values exist for all qualifiers as indicated below. All qualifier names may be abbreviated (characters

omitted from the right) as long as no ambiguity arises.

source-file-spec

This parameter specifies the file containing the source text to be compiled. Any valid VAX/VMS Mlcnanmc may
be used. If the f'Me type is omitted from the specification, file type ada is assumed by default. It this parameter
is omitted, the user will be prompted for it. The format of the source text is described in Section 4.2.

4-2. The Ada Compiler

/llst
/nolLst (default)

The user may request a source listing by means of the qualifier /list. The source listing is written to the list file.
Section 4.3.2 contains a description of the source listing.

If/nolist is active, no source listing is produced, regardless of any LIST pragmas in the program or any diagnos-
tic messages produced.

In addition, the /list qualifier provides generated assembly listings for each compilation unit in the source file.
Section 4.3.6 contains a description of the generated assembly listing.

/xDf
/noxre' (default)

A cross-reference listing can be requested by the user by means of this qualifier. If /xrtf is active and no severe
or fatal errors are found during the compilation, the cross-reference listing is written to the list file. The cross-
reference listing is described in Section 4.3.4.

/llbrary=file-spec
/library =ada1750_lbrary (default)

This qualifier specifies the current sublibrary and thereby also specifies the current program library which con-
sists of the current sublibrary through the root sublibrary (see Chapter 2). If the qualifier is omitted, the subli-
brary designated by the logical name ada]750library is used as the current sublibrary.

Section 4.4 describes how the Ada compiler uses the current sublibrary.

/configurationfile =file-spec

/conflgurationfile = adaI750config (default)

This qualifier specifies the configuration file to be used by the compiler in the current compilation.

If the qualifier is omitted, the configuration file designated by the logical name ada1750 conig is used by
default. Section 4.1.4 contains a description of the configuration file.

/keep-assembly
/nokeep assembly (default)

When this qualifier is given, the compiler will store the generated assembly source code in the program library,
for each c.;mpilation unit being compiled. By default this is not done. Note that while the assembly code is
stored in the library in a compressed form, it nevertheless takes up a large amount of library space relative to
the other information stored in the library for a program unit.

This qualifier does ,not affect the production of generated assembly listings.

*!

rhe Ada Compiler 4.3

/nocheck

When this qualifier is given, all units in this compilation will be compiled as though a pragma SUPPRESS, for
each kind of check, is present at the outermost declarative part of each unit. (See Section F.2 for a description
of the effect of pragma SUPPRESS.) By default this is not done.

/debug
/nodebug (default)

When this qualifier is given, the compiler will generate symbolic debug information for each compilation unit in

the source file and store the information in the program library. By default this is not done.

This symbolic debug information is used by the InterACT Symbolic Debugging and Simulation System.

It is important to note that the identical object code is produced by the compiler, whether or not the /debug
qualifier is active. There are some minor differences in the generated assembly code, due to some extra labels
being generated in the debug case.

/nooptimize

A small portion of the optimizing capability of the compiler places capacity limits on the source program (e.g.,
number of variables in a compilation unit) that are more restrictive than those documented in Section F.13. If a
compile produces an error message indicating that one of these limits has been reached (e.g., *** 1562S-0:
Optimizer capacity exceeded. Too many names in a basic block'), use of this /nooptimize qualifier will bypass
this particular optimizing capability and allow the compilation to finish normally.

IMPORZ4NT NOTE." Do not use this qualifier for any other reason. Do not attempt to use it in its positive
form (/optimize), either with or without any of its keyword parameters. The /optimize qualifier as defined in
the delivered command defimition file is preset to produce the most effective optimization possible; any other
use of it may produce either non-optimal or incorrect generated code.

/progress
/noprogress (default)

When this qualifier is given, the compiler will write a message to sys$output as each pass of the compiler starts
to run. This information is not provided by default.

Examples or qualifier usage

$ %da175O navigation constants

$ adal7SO/list/xref event scheduler

S adal7SO/prog/lib=testversionsalb sys$user.(source] altitudes

